detector technology

Engineers and technicians in the UK have started production of key piece of equipment for a major international science experiment. The UK government has invested $89 million in the international Deep Underground Neutrino Experiment. As part of the investment, the UK is delivering a series of vital detector components built at the Science and Technology Facilities Council’s Daresbury Laboratory.

From Pesquisa, November 2020: The FAPESP scientific director shares how he encouraged behaviors that helped improve research in São Paulo. With FAPESP encouragement, researchers in Brazil have held leadership positions in international collaborations, including in a photon detection system called Arapuca. Arapuca is a technology used in Fermilab’s Short-Baseline Near Detector and a baseline technology for the international Deep Underground Neutrino Experiment, hosted by Fermilab.

Fermilab plays a key role in the Quantum Science Center, led by Oak Ridge National Laboratory. The center unites Oak Ridge’s powerhouse capabilities in supercomputing and materials science with Fermilab’s world-class high-energy physics instrumentation and measurement expertise and facilities. Drawing on their experience building and operating experiments in cosmology and particle physics and in quantum information science, the Fermilab team is engaging in QSC efforts to develop novel, advanced quantum technologies.

From NIST, Oct. 13, 2020: Researchers at NIST and their colleagues, including Fermilab scientist Gordan Krnjaic, have proposed a novel method for finding dark matter. The experiment, in which a billion millimeter-sized pendulums would act as dark matter sensors, would be the first to hunt for dark matter solely through its gravitational interaction with visible matter. A three-minute animation illustrates the new technique.

Scientists are testing the components and systems for the international Deep Underground Neutrino Experiment, hosted by Fermilab, with other liquid-argon particle detectors. One such detector is ICEBERG, which is over 10,000 times smaller than DUNE will be. ICEBERG’s measurements are providing insight for future neutrino experiments.