cosmology

11 - 20 of 114 results

A starry night sky with purple diagonal stripe from lower left to upper right corner above an observatory lit up in bright red. A shadow of a building or facility is in the lower right corner.

Dark Energy Survey releases most precise look at the universe’s evolution

The Dark Energy Survey collaboration has created the largest ever maps of the distribution and shapes of galaxies, tracing both ordinary and dark matter in the universe out to a distance of over 7 billion light years. The analysis, which includes the first three years of data from the survey, is consistent with predictions from the current best model of the universe, the standard cosmological model. Nevertheless, there remain hints from DES and other experiments that matter in the current universe is a few percent less clumpy than predicted.

A tessellated image of a white cap with a blue dot on the right edge, with shadow surrounding. This image is tessellated many times. A single cap, center right, is different: It has a white dot with a white concentric circle around it on top. No blue.

Dark Energy Spectroscopic Instrument starts 5-year survey

DESI will capture and study the light from tens of millions of galaxies and other distant objects to better understand our universe and the properties of dark energy. The formal start of DESI’s five-year survey follows a four-month trial run of its custom instrumentation that captured 4-million spectra of galaxies — more than the combined output of all previous spectroscopic surveys. Fermilab has contributed multiple components to the international collaboration led by Berkeley Lab.

One of the DUNE near detector's subdetectors, SAND, will detect neutrinos with an electronic calorimeter, which measures particle energy, and a tracker, which records particle momenta and charge. A second subdetector will use liquid argon to mimic the neutrino interactions in the far detector. The third will use gaseous argon. Working together, they will measure particles with more precision than other neutrino detectors have been able to achieve. Credit: DUNE collaboration

Particle detector at Fermilab plays crucial role in Deep Underground Neutrino Experiment

DUNE’s near detector, located at Fermilab, will take vital measurements of neutrino beam energy and composition before it reaches the experiment’s far detector in South Dakota. Its unmatched precision measurements will offer its own opportunities for the discovery of new physics.