SRF technology

1 - 10 of 10 results

TESLA’s high-gradient march

    From CERN Courier, Nov. 10, 2020: Established 30 years ago with a linear electron-positron collider in mind, the TESLA Technology Collaboration has played a major role in the development of superconducting radio-frequency cavities and related technologies for a wide variety of applications. The first decade of the 21st century saw the TTC broaden its reach, for example, gradually opening to the community working on proton superconducting cavities, such as the half-wave resonator string collaboratively developed at Argonne National Lab and now destined for use in PIP-II at Fermilab.

    Particle accelerator technology could solve one of the most vexing problems in building quantum computers

    One of the most difficult problems to overcome in developing a quantum computer is finding a way to maintain the lifespan of information held in quantum bits, called qubits. Researchers at Fermilab and Argonne National Laboratory are working to determine whether devices used in particle accelerators can help solve the problem. The team will run simulations on high-performance computers that will enable them to predict the lifespan of information held within these qubits using smaller versions of these devices, taking us one step closer to the age of quantum computing.

    Shortly after breaking ground on the PIP-II accelerator project on Friday, March 15, Fermilab employees were joined by the governor of Illinois, six members of Congress and partners from around the world in this group photo. Photo: Reidar Hahn

    Fermilab, international partners break ground on new state-of-the-art particle accelerator

    The March 15 ceremony marks the start of work on PIP-II, a major new accelerator project at Fermilab. The PIP-II accelerator will power the long-term future of the laboratory’s research program, including the international Deep Underground Neutrino Experiment.

    DOE Under Secretary for Science Paul Dabbar visits Fermilab to discuss quantum program

    Fermilab’s quantum program includes a number of leading-edge research initiatives that build on the lab’s unique capabilities as the U.S. center for high-energy physics and a leader in quantum physics research. On the tour, researchers discussed quantum technologies for communication, high-energy physics experiments, algorithms and theory, and superconducting qubits hosted in superconducting radio-frequency cavities.

    Silicon Valley welcomes a superconducting X-ray laser

      From Forbes, Jan. 24, 2018: Fermilab will provide half of SLAC’s LCLS-II cryomodules, and Jefferson Lab in Newport News, Virginia, will provide the other half. Fermilab is located in Illinois, so the very first cryomodule that arrived at SLAC by truck last week made a hefty trip from Illinois to California – essentially making a trip across the whole of the U.S.