Leah Hesla

Leah Hesla is a senior writer in the Fermilab Office of Communication.

After 32 years at Fermilab, the individual who has served as the lab’s extraordinary photographer — and so much more — is leaving. Reidar Hahn’s legacy will live on in his photos, the many services he’s provided for the lab, and the countless, selfless ways he has helped the lab community.

Today’s quantum computing processors must operate at temperature close to absolute zero, and that goes for their electronics, too. Fermilab’s cryoelectronics experts recently hosted a first-of-its-kind workshop where leaders in quantum technologies took on the challenges of designing computer processors and sensors that work at ultracold temperatures.

Future particle colliders will need strong magnets to steer high-energy particle beams as they travel close to the speed of light on their circular path. A group at Fermilab has achieved a record field strength of 14.1 teslas for a particle accelerator steering magnet, breaking the 11-year record.

The first major superconducting section of the PIP-II accelerator has come to Fermilab: the first of 23 cryomodules for the future accelerator. The cryomodules’ job is to get the lab’s powerful proton beam up and moving, sending it to higher and higher energies, approaching the speed of light. This first cryomodule also represents a successful joint effort between Argonne National Laboratory and Fermilab to design and produce a critical accelerator component for the future heart of Fermilab.

A new machine learning technology tested by Fermilab scientists and collaborators can spot specific particle signatures among an ocean of LHC data in the blink of an eye, much faster than standard methods. Sophisticated and swift, its performance gives a glimpse into the game-changing role machine learning will play in making future discoveries in particle physics as data sets get bigger and more complex.

In his doctoral thesis, Todd details a method for data analysis in a way that minimizes a source of bias in some particle physics experiments. By analyzing information from two distant detectors simultaneously rather than sequentially, he incorporated the lack of precision knowledge in both detectors. A University of Cincinnati graduate, Todd used data from Fermilab’s MINOS and MINOS+ experiments, and his analysis can be applied in other neutrino research as well.

A Fermilab group has found a way to simulate, using a quantum computer, a class of particles that had resisted typical computing methods. Their novel approach opens doors to an area previously closed off to quantum simulation in areas beyond particle physics, thanks to cross-disciplinary inspiration.