Fermilab features

241 - 250 of 608 results

Ultrapure copper for an ultrasensitive dark matter detector

To detect the rare and subtle interactions of dark matter with ordinary matter, the particle detectors for the SuperCDMS experiment must be cooled to temperatures near absolute zero and surrounded by ultrapure copper. From the mine all the way to deployment at SNOLAB, researchers are going to great lengths to ensure the purity of the copper.

Solid-state technology for big data in particle physics

Scientists working on experiments at the LHC are continually refining our understanding of the fundamental constituents of our universe. Every measurement, every new, uncovered facet of a subatomic particle comes only after a thorough and rigorous analysis of the data. The way they access that data may soon get an upgrade at Fermilab, where CMS collaborators recently installed a new solid-state technology at its computing facility. The technology will complement the standard spinning-disk hard drives that have been the dominant computer storage devices for the last several decades.

Robert Bernstein still relishes challenge in second stint as Mu2e co-spokesperson

Bernstein is overseeing the Fermilab Mu2e experiment as it moves from its construction to installation phase and into a running experiment. A collaboration of nearly 250 scientists at 40 institutions that had to invent technology to get to this point, Mu2e is in an exciting phase, especially for early-career researchers who will not only construct the experiment, but also analyze the data.

Northern Illinois flourishes as accelerator R&D hub under Fermilab leadership

Fermilab and partners in northern Illinois have established the region as a leader in particle accelerator science and technology. Few places in the world boast such a concentrated effort in particle acceleration research, developing and building cutting-edge particle accelerators, and growing an accelerator-focused workforce.