result

11 - 20 of 54 results

Method for determining electron beam properties could help future ultraviolet, X-ray synchrotron light sources

Fermilab user and University of Chicago PhD candidate Ihar Lobach explains how his team used Fermilab’s IOTA electron storage ring to glean insights that can be difficult to obtain on an electron beam and how this proof of principle could benefit the Advanced Photon Source Upgrade at Argonne National Laboratory.

Coffea speeds up particle physics data analysis

The prodigious amount of data produced at the Large Hadron Collider presents a major challenge for data analysis. Coffea, a Python package developed by Fermilab researchers, speeds up computation and helps scientists work more efficiently. Around a dozen international LHC research groups now use Coffea, which draws on big data techniques used outside physics.

Random twists of place: How quiet is quantum space-time at the Planck scale?

Fermilab scientist and University of Chicago professor of astronomy and astrophysics Craig Hogan gives perspective on how the Holometer program aims at a tiny scale — the Planck scale — to help answer one of the universe’s most basic questions: Why does everything appear to happen at definite times and places? He contextualizes the results and offers optimism for future researchers.

NOvA far detector

NOvA turns its eyes to the skies

The NOvA experiment, best known for its measurements of neutrino oscillations using particle beams from Fermilab accelerators, has been turning its attention to measurements of cosmic phenomena. In a series of results, NOvA reports on neutrinos from supernovae, gravitational-wave events from black hole mergers, muons from cosmic rays, and its search for the elusive monopole.

Searching for supernova neutrinos with DUNE

The international Deep Underground Neutrino Experiment collaboration has published a paper about its capability for performing supernova physics. It details the kind of activity DUNE expects in the detector during a supernova burst, how DUNE will know once a supernova occurs and what physics DUNE will extract from the neutrinos. DUNE’s unique strength is its sensitivity to a particular type of neutrino called the electron neutrino, which will provide scientists with supernova data not available from any other experiment.