Top news

New amplification algorithms expand the utility of quantum computers to handle non-Boolean scenarios, allowing for an extended range of values to characterize individual records, such as the scores assigned to each disk in the output superposition above. Illustration: Prasanth Shyamsundar

To fully realize the potential of quantum computing, scientists must start with the basics: developing step-by-step procedures, or algorithms, for quantum computers to perform simple tasks. A Fermilab scientist has done just that, announcing two new algorithms that build upon existing work in the field to further diversify the types of problems quantum computers can solve.

These physicists comprise the LPC team that contributed to the supersymmetry analysis.

U.S. CMS physicists from Fermilab and associated universities collaborating under the umbrella of the LPC make up a team that is the first to perform a new kind of search for “stealthy” supersymmetry that does not result in an obvious signature of large energy imbalance. Instead, the LPC team is looking for collisions that result in an unusually large number of particles in the detector. CMS recently published a briefing explaining their analysis.

A super-precise experiment at Fermilab is carefully analyzing every detail of the muon’s magnetic moment. The Fermilab Muon g-2 collaboration has announced it will present its first result at 10 a.m. CDT on April 7.

The cryomodule from Fermilab is 12 meters (39 feet) long and will start the transport to SLAC on March 19, 2021. Photo: Fermilab

Fermilab gives a sendoff to the final superconducting component for the LCLS-II particle accelerator at SLAC National Accelerator Laboratory in California. LCLS-II will be the world’s brightest and fastest X-ray laser. A partnership of particle accelerator technology, materials science, cryogenics and energy science, LCLS-II exemplifies cross-disciplinary collaboration across DOE national laboratories.

An experiment that will contribute vital knowledge about something deceptively simple – a proton’s spin – will soon come online at Fermilab. The experiment may either begin to validate the “potato salad” model of proton spin or force scientists to develop a new model entirely.