accelerator

From APS Physics, Dec. 4, 2020: Scientists are finding ways to increase particle accelerator efficiency. One way to reduce cooling costs relies on a technique developed at Fermilab and Jefferson Lab.

From CERN Courier, Nov. 10, 2020: Established 30 years ago with a linear electron-positron collider in mind, the TESLA Technology Collaboration has played a major role in the development of superconducting radio-frequency cavities and related technologies for a wide variety of applications. The first decade of the 21st century saw the TTC broaden its reach, for example, gradually opening to the community working on proton superconducting cavities, such as the half-wave resonator string collaboratively developed at Argonne National Lab and now destined for use in PIP-II at Fermilab.

Fermilab scientist Robert Ainsworth has won a $2.5 million Department of Energy Early Career Research Award to study different ways of ensuring stability in high-intensity proton beams. By studying how certain types of beam instabilities emerge and evolve under different conditions, his team can help sharpen scientists’ methods for correcting them or avoiding them to begin with.

From The Innovation Platform, July 10, 2020: In this Q&A, Mauricio Suarez, Illinois Accelerator Research Center head and Fermilab deputy head of technology development and industry engagements, discusses the development of compact particle accelerators, using accelerators for the environment and in medicine, and commercializing technologies developed for high-energy physics.

From Lawrence Berkeley National Laboratory, June 17, 2020: While COVID-19 risks had led to a temporary halt in fabrication work on high-power superconducting magnets built by a collaboration of three national labs for an upgrade of the world’s largest particle collider at CERN in Europe, researchers at Berkeley Lab are still carrying out some project tasks. Fermilab scientist Giorgio Apollinari, head of the U.S.-based magnet effort for the HL-LHC, is quoted in this piece.

Fermilab is currently upgrading its accelerator complex to produce the world’s most powerful beam of high-energy neutrinos. To generate these particles, the accelerators will send an intense beam of protons traveling near the speed of light through a maze of particle accelerator components before passing through metallic “windows” and colliding with a stationary target. Researchers are testing the endurance of windows made of a titanium alloy, exposing samples to high-intensity proton beams to see how well the material will perform.