Fermilab features

251 - 260 of 599 results

Dark Energy Survey census of the smallest galaxies hones the search for dark matter

Scientists on the Dark Energy Survey have used observations of the smallest known galaxies to better understand dark matter, the mysterious substance that makes up 85% of the matter in the universe. The smallest galaxies can contain hundreds to thousands of times more dark matter than normal visible matter, making them ideal laboratories for studying this mysterious substance. By performing a rigorous census of small galaxies surrounding our Milky Way, scientists on the Dark Energy Survey have been able to constrain the fundamental particle physics that governs dark matter.

Robert Ainsworth awarded $2.5 million to improve particle beams for high-intensity experiments

Fermilab scientist Robert Ainsworth has won a $2.5 million Department of Energy Early Career Research Award to study different ways of ensuring stability in high-intensity proton beams. By studying how certain types of beam instabilities emerge and evolve under different conditions, his team can help sharpen scientists’ methods for correcting them or avoiding them to begin with.

The many facets of quantum science at Fermilab

Fans of Fermilab know that our scientists are experts in the weird realm of quantum physics. In recent years, they’ve been harnessing the strange properties of the quantum world to develop game-changing technologies in quantum computing, quantum sensors and quantum communication. Learn more about the burgeoning area of quantum information science and how Fermilab is advancing this exciting field.

Fermilab achieves 14.5-tesla field for accelerator magnet, setting new world record

Fermilab scientists have broken their own world record for an accelerator magnet. In June, their demonstrator steering dipole magnet achieved a 14.5-tesla field, surpassing the field strength of their 14.1-tesla magnet, which set a record in 2019. This magnet test shows that scientists and engineers can address the demanding requirements for a future particle collider under discussion in the particle physics community.

Five thousand eyes on the skies: Scientists choreograph robots to observe distant galaxies

Scientists have begun operating the Dark Energy Spectroscopic Instrument, or DESI, to create a 3-D map of over 30 million galaxies and quasars that will help them understand the nature of dark energy. The new instrument is the most advanced of its kind, with 5,000 robotic positioners that will enable scientists to gather more than 20 times more data than previous surveys. Researchers at Fermilab helped develop the software that will direct these positioners to focus on galaxies several billion light-years away and are currently in the process of fine-tuning the programs used before the last round of testing later this year.

Crews create a blast to take the Deep Underground Neutrino Experiment to the next stage

Construction workers have carried out the first underground blasting for the Long-Baseline Neutrino Facility, which will provide the space, infrastructure and particle beam for the international Deep Underground Neutrino Experiment. This prep work paves the way for removing more than 800,000 tons of rock to make space for the gigantic DUNE detector a mile underground.