Top news

201 - 210 of 886 results

Engineers and scientists at Fermilab are designing machine learning programs for the lab’s accelerator complex. These algorithms will enable the laboratory to save energy, give accelerator operators better guidance on maintenance and system performance, and better inform the research timelines of scientists who use the accelerators. The pilot system will used on the Main Injector and Recycler, pictured here. It will eventually be extended to the entire accelerator chain. Photo: Reidar Hahn, Fermilab

Fermilab receives DOE funding to develop machine learning for particle accelerators

Fermilab scientists and engineers are developing a machine learning platform to help run Fermilab’s accelerator complex alongside a fast-response machine learning application for accelerating particle beams. The programs will work in tandem to boost efficiency and energy conservation in Fermilab accelerators.

Fermilab's optical stochastic cooling experiment is now under way at the 40-meter-circumference Integrable Optics Test Accelerator, a versatile particle storage ring designed to pursue innovations in accelerator science. Photo: Giulio Stancari, Fermilab

Next-generation particle beam cooling experiment underway at Fermilab accelerator

High-intensity particle beams enable researchers to probe rare physics phenomena. A proposed technique called optical stochastic cooling could achieve brighter beams 10,000 times faster than current technology allows. A proof-of-principle experiment to demonstrate OSC has begun at Fermilab’s Integrable Optics Test Accelerator.

Major upgrade to Fermilab accelerator complex gets green light

The U.S. Department of Energy has formally approved the scope, schedule and cost of the PIP-II project at Fermilab. The PIP-II accelerator will become the heart of Fermilab’s upgraded accelerator complex, delivering more powerful proton beams to the lab’s experiments and enabling deeper probes of the fundamental constituents of the universe.

Fermilab and partners achieve sustained, high-fidelity quantum teleportation

A joint team of researchers at Fermilab and partner institutions have achieved quantum teleportation, teleporting information over a distance of 44 kilometers. The remarkable achievement supports the premise that scientists and engineers can build a workable and high-fidelity quantum network using practical devices.

One minute with Kate Sienkiewicz, LBNF Near Site Conventional Facilities project manager

From working at the CIA to designing science facilities at Fermilab, Kate Sienkiewicz enjoys tackling complex problems. Currently, she oversees the team tasked with designing and building conventional facilities at the Long-Baseline Neutrino Facility near site for the international Deep Underground Neutrino Experiment — all with the overarching goal of understanding the universe.