Five DIY physics demos
Missing visits to the museum? Or in need of some home-school activities? Check out these five do-it-yourself physics demos from Ketevan Akhobadze, an exhibit developer for the Lederman Science Center at Fermilab.
21 - 30 of 77 results
Missing visits to the museum? Or in need of some home-school activities? Check out these five do-it-yourself physics demos from Ketevan Akhobadze, an exhibit developer for the Lederman Science Center at Fermilab.
From CERN, Jan. 26, 2021: This week marks the 50th anniversary of the first proton collisions in CERN’s Intersecting Storage Rings, the first hadron collider ever built. To celebrate, see hadron colliders of the last half-century — including the Tevatron and the Large Hadron Collider — through a historical lens, with an eye toward the quest for high luminosity and new energy frontiers.
Once the most popular framework for physics beyond the Standard Model, supersymmetry is facing a reckoning — but many researchers are not giving up on it yet.
More than 3,500 researchers from around the world collaborate with Fermilab to develop state-of-the-art technologies and solve the mysteries of matter, energy, space and time. Here is a look at 10 ways Fermilab advanced science and technology in 2020.
From CERN Courier, Sept. 9, 2020: The first ICHEP meeting since the publication of the update of the European strategy for particle physics covered Higgs and neutrino physics, including results from the CMS collider experiment and the DUNE, NOvA and MicroBooNE neutrino experiments.
Scientists know the Higgs boson interacts with extremely massive particles. Now, they’re starting to study how it interacts with lighter particles as well.
The ATLAS and CMS experiments at CERN have announced new results that show that the Higgs boson decays into two muons. US CMS — the United States contingent of the global CMS collaboration — played a crucial role in this result, contributing to the excellent performance of CMS detector.
From Department of Energy, July 6, 2020: DOE announces $132 million in funding for 64 university research awards on a range of topics in high-energy physics to advance knowledge of how the universe works at its most fundamental level. Projects include experimental work on neutrinos at Fermilab, the search for dark matter, studies of the nature of dark energy and the expansion of the universe with the Dark Energy Spectroscopic Instrument and and investigation of the Higgs boson from data collected at the Large Hadron Collider at CERN in Switzerland.
Experimentalists and theorists search for Higgs bosons escaping as dark matter.
From Physics World, April 3, 2020: A collaboration that includes Fermilab scientists is exploring how quantum computing could be used to analyze the vast amount of data produced by experiments on the Large Hadron Collider at CERN. The researchers have shown that a “quantum support vector machine” can help physicists make sense out of the huge amounts of information generated at CERN.