From APS Physics, Dec. 4, 2020: Scientists are finding ways to increase particle accelerator efficiency. One way to reduce cooling costs relies on a technique developed at Fermilab and Jefferson Lab.
accelerator
This shows the octupole channel in the Fermilab Integrable Optics Test Accelerator, or IOTA, in November. A set of 17 independently powered octupole magnets is installed in one of the straight sections of IOTA. The channel is used for experiments on nonlinear integrable optics and on the physics of dynamical systems. These experiments study new ways to stabilize high-intensity beams for research at the frontiers of particle physics.
The Snowmass LOI process has provided an opportunity to engage the community and understand needs and opportunities. As a continuation of that process, we will have a one-day virtual workshop on Tuesday, Dec. 15, to discuss the concept of installing a constant field proton accumulator ring in the Booster tunnel and the HEP studies that could benefit. The workshop will be roughly segmented into Booster Accumulator Ring design consideration and implementation, while the afternoon will be dedicated to HEP use….
Jonathan Jarvis and Jamie Santucci install the apparatus for the new optical stochastic cooling experiment in the Fermilab Integrable Optics Test Accelerator, known as IOTA, in November. The experiment uses infrared light emitted by electrons in an undulator magnet to sense and to adjust their positions and velocities. The goal is to demonstrate for the first time a significant increase in the density and therefore in the quality of charged particle beams using this principle.
From CERN Courier, Nov. 10, 2020: Established 30 years ago with a linear electron-positron collider in mind, the TESLA Technology Collaboration has played a major role in the development of superconducting radio-frequency cavities and related technologies for a wide variety of applications. The first decade of the 21st century saw the TTC broaden its reach, for example, gradually opening to the community working on proton superconducting cavities, such as the half-wave resonator string collaboratively developed at Argonne National Lab and now destined for use in PIP-II at Fermilab.
Fermilab and partners in northern Illinois have established the region as a leader in particle accelerator science and technology. Few places in the world boast such a concentrated effort in particle acceleration research, developing and building cutting-edge particle accelerators, and growing an accelerator-focused workforce.
Fermilab scientist Robert Ainsworth has won a $2.5 million Department of Energy Early Career Research Award to study different ways of ensuring stability in high-intensity proton beams. By studying how certain types of beam instabilities emerge and evolve under different conditions, his team can help sharpen scientists’ methods for correcting them or avoiding them to begin with.