result

1 - 10 of 54 results

CDF collaboration at Fermilab announces most precise ever measurement of W boson mass to be in tension with the Standard Model

Scientists of the Collider Detector at Fermilab collaboration have achieved the most precise measurement to date of the mass of the W boson, one of nature’s force-carrying particles. The measured value shows tension with the value expected based on the Standard Model of particle physics.

A starry night sky with purple diagonal stripe from lower left to upper right corner above an observatory lit up in bright red. A shadow of a building or facility is in the lower right corner.

Dark Energy Survey releases most precise look at the universe’s evolution

The Dark Energy Survey collaboration has created the largest ever maps of the distribution and shapes of galaxies, tracing both ordinary and dark matter in the universe out to a distance of over 7 billion light years. The analysis, which includes the first three years of data from the survey, is consistent with predictions from the current best model of the universe, the standard cosmological model. Nevertheless, there remain hints from DES and other experiments that matter in the current universe is a few percent less clumpy than predicted.

Muon g-2 superconducting magnetic storage ring

First results from Fermilab’s Muon g-2 experiment strengthen evidence of new physics

The first results from the Muon g-2 experiment hosted at Fermi National Accelerator Laboratory show fundamental particles called muons behaving in a way not predicted by the Standard Model of particle physics. These results confirm an earlier experiment of the same name performed at Brookhaven National Laboratory. Combined, the two results show strong evidence that our best theoretical model of the subatomic world is incomplete. One potential explanation would be the existence of undiscovered particles or forces.

New amplification algorithms expand the utility of quantum computers to handle non-Boolean scenarios, allowing for an extended range of values to characterize individual records, such as the scores assigned to each disk in the output superposition above. Illustration: Prasanth Shyamsundar

New computing algorithms expand the boundaries of a quantum future

To fully realize the potential of quantum computing, scientists must start with the basics: developing step-by-step procedures, or algorithms, for quantum computers to perform simple tasks. A Fermilab scientist has done just that, announcing two new algorithms that build upon existing work in the field to further diversify the types of problems quantum computers can solve.

These physicists comprise the LPC team that contributed to the supersymmetry analysis.

Searching for stealthy supersymmetry

U.S. CMS physicists from Fermilab and associated universities collaborating under the umbrella of the LPC make up a team that is the first to perform a new kind of search for “stealthy” supersymmetry that does not result in an obvious signature of large energy imbalance. Instead, the LPC team is looking for collisions that result in an unusually large number of particles in the detector. CMS recently published a briefing explaining their analysis.